Probabilistic precipitation rate estimates from GOES-R for hydrologic applications

Pierre Kirstetter (University of Oklahoma), Jonathan Gourley (NOAA / National Severe Storms Laboratory), Heather Grams (Cooperative Institute for Mesoscale Meteorological Studies)

The goal of this research project is to derive consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS by merging the GOES-R precipitation estimates with the Multi-Radar/Multi-Sensor. It will provide seamless QPEs suited for flash flood monitoring and forecasting by the National Weather Service (NWS).

- GOES-R observations can complement the degraded weather radar coverage of the NEXRAD network specifically in the Western U.S.
- GOES-R QPEs will be advanced by deriving distributions of QPE uncertainties associated with the GOES-R deterministic retrievals.
- GOES-R probabilistic precipitation estimates will be fused with MRMS QPE to provide seamless, high-resolution and low latency precipitation estimates across the CONUS.
- The new precipitation product will incorporated into ensemble hydrologic forecast applications for the monitoring and prediction of floods and flash floods

Research framework and overview flowchart of the project